Is My Decoder Ambisonic? Aaron J. Heller SRI International, Menlo Park, CA, US Richard Lee Pandit Litoral, Cooktown, QLD, AU Eric M. Benjamin Dolby Labs, San Francisco, CA, US 125th AES Convention, San Francisco Session P9, Multichannel Sound Reproduction 3 Oct 2008 -- 2:30PM ### **Ambisonics** - Provides a mathematical encapsulation of auditory localization models - A single recording can be reproduced on a variety of speaker arrays #### But... Decoder must be matched to the speaker array geometry and listening conditions ## Why test decoders? - No controlling interest currently - Current decoders are software written by enthusiasts - Many adjustments - Scant guidance - Users expected to listen and "tune" - Difficult to diagnose faults - Software difficult to validate by inspection ## **Ambiguity** "The precise definition [of Ambisonics] has been ignored, and the term 'ambisonic' is now applied loosely to any system that makes use of circular or spherical harmonics." Peter Craven, "The `Hierarchical' Viewpoint," Illusions in Sound -- AES 22nd UK Conference, 2007 ## Consequences - Quality of information on the web is mixed - Decoder writers - Many defective or improperly used decoders - Researchers - What were they using for their work? - Listeners - Confusing or unpleasant results ### **Definitions** - Localization models - Ambisonic criteria Used to drive decoder design, evaluation and validation ### **Localization Models** - Two primitive models - Velocity localization vector, r_V - · ITD -- Blumlein, Clark, et al. - Energy localization vector, r_E - ILD -- Fransen, Mertens, ... - Direction indicates direction of localization perception - Magnitudes indicates quality and stability - In natural hearing, magnitude is 1 - Different approach needed for each regime ### **Ambisonic Criteria** - Gerzon's definition - Velocity and energy vector directions are the same up to around 4 kHz and are largely unchanged with frequency. - At low frequencies, the magnitude of the velocity vector is near 1 for all directions. - At mid/high frequencies the energy vector is maximized over as many directions as possible. - Necessary (if perhaps not sufficient) for good surround sound reproduction - Confirmed by listening tests ### **Test Procedure** - Measure Impulse Response from a variety of directions - Evaluate those against the Ambisonic criteria - Current paper examines - A single speaker array (√3:1 rectangle) - Four decoders - Matlab code to generate test signals and analyze results ## Test signal ## Typical Test Harness ## Speaker Array Geometry - Regular polygons and polyhedra - Often difficult to fit into real rooms - Irregular, but diametric opposite pairs - Rectangles, bi- and tri-rectangles - General irregular arrays - ITU 5.1, hemispheres - Assumption that all arrays can be treated as regular polygonal is the most common error ## Components of a decoder - Decoder matrix matched to speaker array geometry - Phase-matched dual-band processing - Near-field compensation - Cookbook design procedures for all three components in Appendix. - Lack of dual-band processing is another common problem - Poor localization or comb filter artifacts ## Types of Decoders - Matrix and other parameters entered directly - Adriaensen's AmbDec - Presets for various array geometries - Csound, CMT, ... - Virtual Microphones - Many VST and AU plugins ### **AmbDec** Decoder matrix and parameters derived by procedures in appendix ### AmbDec w/o NFC ## AmbDec w/o NFC ### AmbDec w/o NFC ## VST Plugin (virtual mic type) 150 Hz 3 kHz Virtual mics pointed at loudspeakers per directions. Other parameters left at default settings. # **VST Plugin** ### 0 degrees ### 90 degrees # **VST Plugin** ### 0 degrees # **VST Plugin** 150 Hz 3 kHz Tested square decoder Tested square decoder Tested square decoder Tested square decoder ## Minim AD-10 #### 150 Hz #### #### 3 kHz ## Mimim AD-10 ## Mimim AD-10 ## Mimim AD-10 ## Informal Listening Tests - Same material as earlier tests - Ambdec - Good localization and envelopment - No audible artifacts - Decoder 2 (VST Plugin) - Front and rear localization only - Csound "bformdec" (simulated) - Comb filtering and in-head localization artifacts ## Decoder Design - Decoder matrix derived by generalized inversion - Pick a basis set of spherical harmonics - "project" speaker locations onto basis set - Goal reproduce basis set (exact solution) - Many solutions, want minimum radiated power - Use Moore-Penrose Pseudo-Inversion - Singular Value Decomposition $$A = U \sum V^* \rightarrow A^{\dagger} = V \sum {\dagger} U^*$$ - pinv() in Matlab and Octave - Equivalent to Least-Squares solution - Minimum radiated power, highest average r_E ## Decoder Design - Phase-matched bandsplitting and NFC filters - Cookbook procedures for design - Sample implementation using Bidule recursive function block ## Is My Encoder Ambisonic? - Ambisonics can encode - Distance, diffuse fields, standing wave - In fact, a properly aligned Ambisonic microphone must do this. - This is the proximity effect in all directional microphones - Hence, Ambisonic panner/encoder should have these as well. - See paper for details. ### Conclusions - Most decoders do not meet Ambisonic criteria - Incorrect coefficients for irregular arrays - Lack of dual-band decoding - Lack of near-field compensation - Results in - Poor localization - Uncomfortable effects - Good B-format material is now available - Next, we need easy-to-use playback software ### Further info - Read the paper - Web site URL - http://www.ai.sri.com/ajh/ambisonics - http://www.ambisonia.com - Demonstration tonight, 6 9PM - Bubble, 73 Langton St, SF (3 blocks from Moscone) - 24-speaker hemispherical array - Decoder derived via techniques described here