## Is My Decoder Ambisonic?

Aaron J. Heller

SRI International, Menlo Park, CA, US

Richard Lee

Pandit Litoral, Cooktown, QLD, AU

Eric M. Benjamin

Dolby Labs, San Francisco, CA, US

125<sup>th</sup> AES Convention, San Francisco Session P9, Multichannel Sound Reproduction 3 Oct 2008 -- 2:30PM

### **Ambisonics**

- Provides a mathematical encapsulation of auditory localization models
- A single recording can be reproduced on a variety of speaker arrays

#### But...

 Decoder must be matched to the speaker array geometry and listening conditions

## Why test decoders?

- No controlling interest currently
- Current decoders are software written by enthusiasts
  - Many adjustments
  - Scant guidance
  - Users expected to listen and "tune"
  - Difficult to diagnose faults
- Software difficult to validate by inspection

## **Ambiguity**

"The precise definition [of Ambisonics] has been ignored, and the term 'ambisonic' is now applied loosely to any system that makes use of circular or spherical harmonics."

Peter Craven, "The `Hierarchical' Viewpoint,"

Illusions in Sound -- AES 22<sup>nd</sup> UK Conference, 2007

## Consequences

- Quality of information on the web is mixed
- Decoder writers
  - Many defective or improperly used decoders
- Researchers
  - What were they using for their work?
- Listeners
  - Confusing or unpleasant results

### **Definitions**

- Localization models
- Ambisonic criteria

 Used to drive decoder design, evaluation and validation

### **Localization Models**

- Two primitive models
  - Velocity localization vector,  $r_V$ 
    - · ITD -- Blumlein, Clark, et al.
  - Energy localization vector, r<sub>E</sub>
    - ILD -- Fransen, Mertens, ...
- Direction indicates direction of localization perception
- Magnitudes indicates quality and stability
  - In natural hearing, magnitude is 1
- Different approach needed for each regime

### **Ambisonic Criteria**

- Gerzon's definition
  - Velocity and energy vector directions are the same up to around 4 kHz and are largely unchanged with frequency.
  - At low frequencies, the magnitude of the velocity vector is near 1 for all directions.
  - At mid/high frequencies the energy vector is maximized over as many directions as possible.
- Necessary (if perhaps not sufficient) for good surround sound reproduction
- Confirmed by listening tests

### **Test Procedure**

- Measure Impulse Response from a variety of directions
- Evaluate those against the Ambisonic criteria
- Current paper examines
  - A single speaker array (√3:1 rectangle)
  - Four decoders
- Matlab code to generate test signals and analyze results

## Test signal



## Typical Test Harness



## Speaker Array Geometry

- Regular polygons and polyhedra
  - Often difficult to fit into real rooms
- Irregular, but diametric opposite pairs
  - Rectangles, bi- and tri-rectangles
- General irregular arrays
  - ITU 5.1, hemispheres
- Assumption that all arrays can be treated as regular polygonal is the most common error

## Components of a decoder

- Decoder matrix matched to speaker array geometry
- Phase-matched dual-band processing
- Near-field compensation
- Cookbook design procedures for all three components in Appendix.
- Lack of dual-band processing is another common problem
  - Poor localization or comb filter artifacts

## Types of Decoders

- Matrix and other parameters entered directly
  - Adriaensen's AmbDec
- Presets for various array geometries
  - Csound, CMT, ...
- Virtual Microphones
  - Many VST and AU plugins

### **AmbDec**



Decoder matrix and parameters derived by procedures in appendix





### AmbDec w/o NFC



## AmbDec w/o NFC



### AmbDec w/o NFC



## VST Plugin (virtual mic type)

150 Hz

3 kHz





Virtual mics pointed at loudspeakers per directions. Other parameters left at default settings.

# **VST Plugin**

### 0 degrees

### 90 degrees





# **VST Plugin**

### 0 degrees







# **VST Plugin**









150 Hz

3 kHz





Tested square decoder



Tested square decoder



Tested square decoder



Tested square decoder

## Minim AD-10

#### 150 Hz

#### 

#### 3 kHz



## Mimim AD-10



## Mimim AD-10



## Mimim AD-10



## Informal Listening Tests

- Same material as earlier tests
- Ambdec
  - Good localization and envelopment
  - No audible artifacts
- Decoder 2 (VST Plugin)
  - Front and rear localization only
- Csound "bformdec" (simulated)
  - Comb filtering and in-head localization artifacts

## Decoder Design

- Decoder matrix derived by generalized inversion
  - Pick a basis set of spherical harmonics
  - "project" speaker locations onto basis set
  - Goal reproduce basis set (exact solution)
    - Many solutions, want minimum radiated power
  - Use Moore-Penrose Pseudo-Inversion
    - Singular Value Decomposition

$$A = U \sum V^* \rightarrow A^{\dagger} = V \sum {\dagger} U^*$$

- pinv() in Matlab and Octave
- Equivalent to Least-Squares solution
  - Minimum radiated power, highest average r<sub>E</sub>

## Decoder Design

- Phase-matched bandsplitting and NFC filters
- Cookbook procedures for design
- Sample implementation using Bidule recursive function block







## Is My Encoder Ambisonic?

- Ambisonics can encode
  - Distance, diffuse fields, standing wave
- In fact, a properly aligned Ambisonic microphone must do this.
  - This is the proximity effect in all directional microphones
- Hence, Ambisonic panner/encoder should have these as well.
- See paper for details.

### Conclusions

- Most decoders do not meet Ambisonic criteria
  - Incorrect coefficients for irregular arrays
  - Lack of dual-band decoding
  - Lack of near-field compensation
- Results in
  - Poor localization
  - Uncomfortable effects
- Good B-format material is now available
- Next, we need easy-to-use playback software

### Further info

- Read the paper
- Web site URL
  - http://www.ai.sri.com/ajh/ambisonics
  - http://www.ambisonia.com
- Demonstration tonight, 6 9PM
  - Bubble, 73 Langton St, SF (3 blocks from Moscone)
  - 24-speaker hemispherical array
  - Decoder derived via techniques described here